High School Reference Sheet

Force and Energy

$$F = ma$$

$$PE = mgh$$

$$F = force$$

$$F = w = mg$$

$$KE = \frac{1}{2}mv^2$$

$$m = mass$$

$$F_{\rm q} = \frac{Gm_1m_2}{d^2}$$

 $F = \frac{k_e q_1 q_2}{d^2}$

$$KE = \frac{1}{2}mv^2$$

$$w = weight$$

a = acceleration

$$F_{g} = \frac{Gm_{1}m_{2}}{d^{2}}$$

$$W = \Delta KE$$

$$g = acceleration due to gravity$$

G = gravitational constantd = distance

$$k_{a} = Coulomb's constant$$

q = charge

PE = potential energy

h = height

KE = kinetic energy

v = velocity

W = work

Motion

$$s = \frac{\triangle d}{\triangle t}$$

$$a = \frac{\triangle \mathbf{V}}{\triangle \mathbf{t}}$$

$$p = mv$$

$$J = F \triangle t = m \triangle v$$

$$s = speed$$

$$d = distance$$

$$t = time$$

$$a = acceleration$$

$$v = velocity$$

$$p = momentum$$

$$m = mass$$

$$J = impulse$$

$$F = force$$

High School Reference Sheet

Kepler's Laws

$$e = \frac{f}{d}$$

$$\textit{T}^{2} \propto \textit{R}^{3}$$

e = eccentricity

f = distance between foci of an ellipse

 $d = major \ axis \ length \ of \ an \ ellipse$

T = orbital period

 $R = semi-major \ axis \ of \ an \ orbit$

Waves and Light

$$E = hf$$

$$\mathbf{v} = f\lambda$$

E = energy

h = Planck's constant

f = frequency

v = wave speed

 $\lambda = wavelength$

Experimental Design

Percent Error =
$$\frac{\left|accepted\ value\ -\ experimental\ value\right|}{accepted\ value} \bullet 100$$

Percent Yield =
$$\left(\frac{actual\ yield}{theoretical\ yield}\right) \cdot 100$$

High School Reference Sheet

Constants

Acceleration Due to Gravity: $g = 9.8 \frac{m}{s^2}$

Mass of Earth: $M_{_E} = 5.97 \times 10^{24}\,\text{kg}$

Avogadro's Number: $N_A = 6.02 \times 10^{23} \frac{particles}{mol}$

Planck's Constant: $h = 6.63 \times 10^{-34} \text{J} \cdot \text{s}$

Charge of an Electron: $e = 1.60 \times 10^{-19} \, \mathrm{C}$

Radius of Earth: $R_{_E} = 6.37 \times 10^6 \, m$

Coulomb's Constant: $k_e = 9.00 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$

Speed of Light in a Vacuum: $c = 3.00 \times 10^8 \frac{m}{s}$

Gravitational Constant: $G = 6.67 \times 10^{-11} \frac{N \cdot m^2}{kg^2}$

Volume of a Gas at 0°C and 100 kPa: $V_m = 22.4 \frac{L}{mol}$

Conversions

Calorie to Joule: 1 cal = 4.184 J

Pressure: 1 atm = 760 Torr = 101.3 kPa

Units

Energy: 1 J = 1 N • m

Frequency: $1 \text{ Hz} = 1 \frac{\text{cycle}}{\text{s}}$

Force: $1 \text{ N} = 1 \frac{\text{kg} \cdot \text{m}}{\text{s}^2}$