Table of Contents

Introduction to Practice Test Scoring Guide ... 1
 Example of Metadata ... 2
Grade Eight Practice Test Items .. 3
Introduction to Practice Test Scoring Guide

This California Science Test (CAST) practice test scoring guide offers details about items, student response types, correct responses, and related scoring considerations for the practice test items. These items have been selected to show some of the new approaches to measuring the California Next Generation Science Standards (CA NGSS) that can be found in the assessment. The practice test items are not fully representative of all possible item types included in the CAST. The practice test covers a selection of items from performance expectations assessed in grade eight.

This scoring guide should be used alongside the online practice tests, which can be accessed at http://www.caaspp.org/practice-and-training/index.html. Annotated responses are also available to help explain the rationale for each score point on selected constructed response items from the practice test at https://www.caaspp.org/ta-resources/practice-training.html.

The following information is presented in a metadata table. Metadata contains specific information about each item including the alignment of the item with the CA NGSS standards.

- **Item**: The question number that corresponds to the question as it appears in the practice test

- **Key**: Represents the correct answer(s) to the item or question and includes the score point value for the item and its parts (Items are worth either one or two points. For some technology-enhanced items, a screen capture of the correct answers is included. Exemplars and rubrics are provided for constructed response items.)

- **Performance Expectations (PE) Code**: References the standards that describe what students should know and be able to do

- **Science and Engineering Practices (SEP)**: Descriptions of behaviors that students engage in as they investigate the natural world and design solutions

- **Disciplinary Core Ideas (DCI)**: Essential ideas in the science disciplines that all students should understand

- **Crosscutting Concepts (CCC)**: Interdisciplinary skills students should exhibit that unify the study of science and engineering through common application across fields

- **Item-Level Claim Statement (ILCS)**: A brief statement that illustrates how an item aligns with the PE
Example of Metadata

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>PE</th>
<th>SEP</th>
<th>DCI</th>
<th>CCC</th>
<th>ILCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>(1 point)</td>
<td>MS-PS1-5</td>
<td>2. Developing and Using Models</td>
<td>PS1.B Chemical Reactions</td>
<td>5. Energy and Matter</td>
</tr>
</tbody>
</table>
Grade Eight Practice Test Items

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>PE</th>
<th>SEP</th>
<th>DCI</th>
<th>CCC</th>
<th>ILCS</th>
</tr>
</thead>
</table>
| 1 | **First drop-down menu**: 2
 Second drop-down menu: oxygen
 (1 point) | MS-PS1-1 | 2. Developing and Using Models | PS1.A Structure and Properties of Matter | 3. Scale, Proportion, and Quantity | Identify and explain which molecular model represents formic acid given the chemical formula of formic acid and formaldehyde. |
| 2 | **First drop-down menu**: dark-colored fish
 Second drop-down menu: cannot see them as well as fish of the other color
 (1 point) | MS-LS4-4 | 6. Constructing Explanations and Designing Solutions | LS4.B Natural Selection | 2. Cause and Effect | Explain why one variation of the trait is more advantageous given the introduction of a predator to the environment. |
| 3 | C
 (1 point) | MS-ETS1-2 | 7. Engaging in Argument from Evidence | ETS1.B Developing Possible Solutions | N/A | Select the option that meets the two criteria and provides a supporting statement. |
<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>PE</th>
<th>SEP</th>
<th>DCI</th>
<th>CCC</th>
<th>ILCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Two-point item: Part A: D (1 point) Part B: First drop-down menu: increased Second drop-down menu: decreased (1 point)</td>
<td>MS-PS2-4</td>
<td>7. Engaging in Argument from Evidence</td>
<td>PS2.B Types of Interactions</td>
<td>4. Systems and System Models</td>
<td>Construct a sound argument using evidence from the data, that an increase in an object's mass, increases the magnitude of gravitational force acting on the object.</td>
</tr>
<tr>
<td>5</td>
<td>First drop-down menu: support Second drop-down menu: increase, which will increase the use of freshwater (1 point)</td>
<td>MS-ESS3-4</td>
<td>7. Engaging in Argument from Evidence</td>
<td>ESS3.C Human Impacts on Earth Systems</td>
<td>2. Cause and Effect</td>
<td>Evaluate (with reasoning) whether the provided evidence/data are sufficient to defend the claim based on almond production and the effect it has on water supplies in California.</td>
</tr>
</tbody>
</table>
Exemplars and rubric for item 6:

2 point

Exemplar(s):

At point A, the paramecium population is growing rapidly because there’s plenty of food. At point B, the growth rate slows down because now there are more paramecium and the food supply is limited.

OR

At Point A the paramecium are growing quickly because there is plenty of food but at Point B the food supply has decreased so the growth rate has slowed down.

Rubric:

The response includes that at point A resources are plentiful (unlimited) and the population can grow rapidly.

AND

The response includes that at point B, carrying capacity resources are limited and so the growth rate slows down.

1 point

Exemplar(s):

At Point A there is a lot resources for the paramecium so the population can grow rapidly.

OR

At point B there is not enough resources to support any more growth.

Rubric continues on the next page.
Because after the paramecium has reached its carrying capacity and there is not enough resources, growth has slowed down.

Rubric:
The response includes that at point A resources are plentiful (unlimited) and the population can grow rapidly.

OR

The response includes that at point B, carrying capacity, resources are limited and so the growth rate slows down.

0 point

Exemplar(s):
The population didn’t change size, just that the resources were gone.

OR

The paramecium will find a new food source and continue to grow.

OR

*I!YTT%$#$D

OR

I don’t know; I was never taught this.

Rubric continues on the next page.
Rubric continues from previous page.

Rubric:

0-point should be awarded if a student attempts to answer the prompt but the response is incorrect or too vague (insufficient information provided) to receive credit

A score of 0 should also be given to responses that consist only of:

No relevant content provided

- no response is provided (e.g., blank)
- random keystrokes or nonsense verbiage
- punctuation mark(s) (e.g., “.”)

Student’s opinion of the test

Direct copy of the stimulus without any attempt to answer

Opinions or comments about random topics

I don’t know, IDK (without further elaboration)

Responses that go on to provide an answer to the prompt should be scored based on the relevant part of the response.

Additional annotated samples for this prompt can be found at https://www.caaspp.org/tar-resources/practice-training.html.
<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>PE</th>
<th>SEP</th>
<th>DCI</th>
<th>CCC</th>
<th>ILCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>B</td>
<td>MS-ESS3-2</td>
<td>4. Analyzing and Interpreting Data</td>
<td>ESS3.B Natural Hazards</td>
<td>1. Patterns</td>
<td>Evaluate the information provided on earthquakes and identify a pattern between the location and severity of a natural disaster.</td>
</tr>
<tr>
<td>8</td>
<td>Row 1: Does not show a field exists</td>
<td>MS-PS2-5</td>
<td>3. Planning and Carrying Out Investigations</td>
<td>PS2.B Types of Interactions</td>
<td>2. Cause and Effect</td>
<td>Evaluate data to determine if there is evidence that fields exert forces on nearby objects without direct contact.</td>
</tr>
<tr>
<td>9</td>
<td>First drop-down menu: seafloor spreading</td>
<td>MS-ESS2-3</td>
<td>4. Analyzing and Interpreting Data</td>
<td>ESS1.C The History of Planet Earth</td>
<td>1. Patterns</td>
<td>Identify patterns or relationships in the data that can act as evidence of the past plate motions described in the background information.</td>
</tr>
</tbody>
</table>
Item metadata table continuation showing items 10–13

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>PE</th>
<th>SEP</th>
<th>DCI</th>
<th>CCC</th>
<th>ILCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>C</td>
<td>MS-LS3-1</td>
<td>2. Developing and Using Models</td>
<td>LS3.B Variation of Traits</td>
<td>6. Structure and Function</td>
<td>Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>MS-ESS3-5</td>
<td>1. Asking Questions and Defining Problems</td>
<td>ESS3.D Global Climate Change</td>
<td>7. Stability and Change</td>
<td>Ask a testable question that could be used to evaluate global impacts from a volcano that has erupted.</td>
</tr>
<tr>
<td>13</td>
<td>Exemplars and rubric provided below.</td>
<td>MS-LS2-4</td>
<td>7. Engaging in Argument from Evidence</td>
<td>LS2.C Ecosystem Dynamics, Functioning, and Resilience</td>
<td>7. Stability and Change</td>
<td>Link the evidence/data to a claim about how the impact of La Niña caused a change in the rate of photosynthesis within a tropical forest ecosystem.</td>
</tr>
</tbody>
</table>
Exemplars and rubric for item 13:

2 point

Exemplar(s):

The rate of photosynthesis will decrease. The graph shows that as light intensity decreases then CO₂ intake decreases too.

Rubric:

The response includes that the rate of photosynthesis will decrease.

AND

The response includes that the graph shows as light intensity decreases, the CO₂ uptake decreases.

1 point

Exemplar(s):

The rate of photosynthesis will decrease.

OR

With less sunlight, the plants take up less carbon dioxide.

Rubric:

The response includes that the rate of photosynthesis will decrease.

OR

The response includes that the graph shows as light intensity decreases, the CO₂ uptake decreases.

Rubric continues on the next page.
Rubric continues from previous page.

0 point

Exemplar(s):

The rate of photosynthesis will increase.

OR

The rate of photosynthesis will increase because of the warmer climate.

OR

Carbon dioxide uptake will increase.

OR

*YTT%#$D

OR

I don’t know; I was never taught this.

Rubric:

0-point should be awarded if a student attempts to answer the prompt but the response is incorrect or too vague (insufficient information provided) to receive credit

Rubric continues on the next page.
Grade Eight Practice Test Items

Rubric continues from previous page.

A score of 0 should also be given to responses that consist only of:

No relevant content provided

- no response is provided (e.g., blank)
- random keystrokes or nonsense verbiage
- punctuation mark(s) (e.g., “.”)

Student’s opinion of the test

Direct copy of the stimulus without any attempt to answer

Opinions or comments about random topics

I don’t know, IDK (without further elaboration)

Responses that go on to provide an answer to the prompt should be scored based on the relevant part of the response.

Additional annotated samples for this prompt can be found at https://www.caaspp.org/ta-resources/practice-training.html.
Item metadata table continuation showing items 14–17

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>PE</th>
<th>SEP</th>
<th>DCI</th>
<th>CCC</th>
<th>ILCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>A</td>
<td>MS-LS1-4</td>
<td>7. Engaging in Argument from Evidence</td>
<td>LS1.B Growth and Development of Organisms</td>
<td>2. Cause and Effect</td>
<td>Identify evidence that is irrelevant/invalid and would not support the argument that certain flower colors attract more pollinators.</td>
</tr>
<tr>
<td>15</td>
<td>A</td>
<td>MS-PS4-1</td>
<td>5. Using Mathematics and Computational Thinking</td>
<td>PS4.A Wave Properties</td>
<td>1. Patterns</td>
<td>Use the model to identify how the energy of the wave changes based on a change in amplitude.</td>
</tr>
<tr>
<td>16</td>
<td>Row 1: Remains the same
Row 2: Decreases
Row 3: Increases</td>
<td>MS-PS3-2</td>
<td>2. Developing and Using Models</td>
<td>PS3.A Definitions of Energy</td>
<td>4. Systems and System Models</td>
<td>Use a mathematical representation to explain the mechanisms and behaviors of the gravitational potential energy of two objects that are gravitationally attracted.</td>
</tr>
<tr>
<td>17</td>
<td>First, second, and third options</td>
<td>MS-ESS1-4</td>
<td>6. Constructing Explanations and Designing Solutions</td>
<td>ESS1.C The History of Planet Earth</td>
<td>3. Scale, Proportion, and Quantity</td>
<td>Use scientific concepts, principles, and theories to explain how the evidence supports a conclusion about Earth’s history based on sedimentary rock layers.</td>
</tr>
</tbody>
</table>
Item metadata table continuation showing items 18–19

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>PE</th>
<th>SEP</th>
<th>DCI</th>
<th>CCC</th>
<th>ILCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>D</td>
<td>MS-LS4-3</td>
<td>4. Analyzing and Interpreting Data</td>
<td>LS4.A Evidence of Common Ancestry and Diversity</td>
<td>1. Patterns</td>
<td>Analyze pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.</td>
</tr>
<tr>
<td>19</td>
<td>Exemplars and rubric provided below.</td>
<td>MS-PS1-3</td>
<td>8. Obtaining, Evaluating and Communicating Information</td>
<td>PS1.B Chemical Reactions</td>
<td>6. Structure and Function</td>
<td>Evaluate the information given on the energy used to make plastic bottles and the impact manufacturing has on natural resources.</td>
</tr>
</tbody>
</table>

Exemplars and rubric for item 19:

2 point

Exemplar(s):

Plastic B comes from corn, which is a renewable resource. Plastic A comes from oil, which is a nonrenewable resource. It takes less energy to make Plastic B than to make Plastic A, so making bottles out of Plastic B will conserve energy.

OR

Plastic A is a nonrenewable resource so it wouldn't make sense to use it when you can you use Plastic B, which is a renewable resource. It takes less energy to make something out of a renewable resource.

Rubric continues on the next page.
Rubric continues from previous page.

Rubric:

The response includes that the raw material for Plastic B comes from a renewable resource (corn), but the raw material for Plastic A comes from a nonrenewable resource (oil).

AND

The response includes that it takes less energy to make Plastic B than it does to make Plastic A.

1 point

Exemplar(s):

Plastic B comes from corn, which you plant more of every year and Plastic A comes from oil, which takes millions of years to make.

OR

It takes less energy to make plastic B than plastic A, so it will save more natural resources.

OR

It takes more energy to make plastic A, so I wouldn’t use that one.

Rubric:

The response includes that the raw material for Plastic B comes from a renewable resource (corn), but the raw material for Plastic A comes from a nonrenewable resource.

OR

The response includes that it takes less energy to make Plastic B than it does to make Plastic A.

Rubric continues on the next page.
Grade Eight Practice Test Items

Rubric continues from previous page.

0 point

Exemplar(s):

It takes the same amount of energy when you are making stuff.

OR

Plastic is recyclable.

OR

Plastic A will be easier to use because it is made from oil.

OR

*YTT%$#$D

OR

I don’t know; I was never taught this.

OR

Rubric:

0-point should be awarded if a student attempts to answer the prompt but the response is incorrect or too vague (insufficient information provided) to receive credit

Rubric continues on the next page.
Rubric continues from previous page.

A score of 0 should also be given to responses that consist only of:

No relevant content provided

- no response is provided (e.g., blank)
- random keystrokes or nonsense verbiage
- punctuation mark(s) (e.g., “.”)

Student’s opinion of the test

Direct copy of the stimulus without any attempt to answer

Opinions or comments about random topics

I don’t know, IDK (without further elaboration)

Responses that go on to provide an answer to the prompt should be scored based on the relevant part of the response.
Item metadata table continuation showing items 20–23

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>PE</th>
<th>SEP</th>
<th>DCI</th>
<th>CCC</th>
<th>ILCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>First and third options (1 point)</td>
<td>MS-LS4-4</td>
<td>6. Constructing Explanations and Designing Solutions</td>
<td>LS4.B Natural Selection</td>
<td>2. Cause and Effect</td>
<td>Explain how the increasing frequency for plant height at a certain elevation of one plant species is advantageous.</td>
</tr>
<tr>
<td>21</td>
<td>Speed: Approximately doubles Kinetic Energy: Approximately quadruples (1 point)</td>
<td>MS-PS3-1</td>
<td>4. Analyzing and Interpreting Data</td>
<td>PS3.A Definitions of Energy</td>
<td>3. Scale, Proportion, and Quantity</td>
<td>Determine that increasing the object’s speed results in an increase of the object’s kinetic energy proportional to the square of its speed.</td>
</tr>
<tr>
<td>22</td>
<td>A (1 point)</td>
<td>MS-ESS2-4</td>
<td>2. Developing and Using Models</td>
<td>ESS2.C The Roles of Water in Earth's Surface Processes</td>
<td>5. Energy and Matter</td>
<td>Identify the processes operating within the water cycle and the role living organisms have on the water cycle.</td>
</tr>
<tr>
<td>23</td>
<td>Row 1: Sexual reproduction Row 2: Sexual reproduction Row 3: Asexual reproduction Row 4: Both (1 point)</td>
<td>MS-LS3-2</td>
<td>2. Developing and Using Models</td>
<td>LS3.B Variation of Traits</td>
<td>2. Cause and Effect</td>
<td>Develop a model that identifies some effects or requirements of sexual and asexual reproduction.</td>
</tr>
</tbody>
</table>
Item metadata table continuation showing items 24–25

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>PE</th>
<th>SEP</th>
<th>DCI</th>
<th>CCC</th>
<th>ILCS</th>
</tr>
</thead>
</table>
| **24** | Two-point item:
Part A:
Row 1: Does not require carrying an external source of energy
Row 2: Does not require carrying an external source of energy
Row 3: Requires carrying an external source of energy
Row 4: Requires carrying an external source of energy (1 point)
Part B: A (1 point) | MS-ETS1-3 | 4. Analyzing and Interpreting Data | ETS1.B Developing Possible Solutions | N/A | Identify relationships in the data sets, including relationships between design solutions and given criteria and constraints. |
| **25** | First drop-down menu: pink
Second drop-down menu: basic (1 point) | MS-LS1-5 | 6. Constructing explanations and Designing Solutions | LS1.B Growth and Development of Organisms | 2. Cause and Effect | Select the terms that complete the sentence, based on the student’s investigation and collected data on plant color and soil pH. |
Item metadata table continuation showing items 26–27

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>PE</th>
<th>SEP</th>
<th>DCI</th>
<th>CCC</th>
<th>ILCS</th>
</tr>
</thead>
</table>
| 26 | **Row 1:** Reuses water
Row 2: Reduces water use
Row 3: Provides other source of water (1 point) | MS-ESS3-3 | 6. Constructing Explanations and Designing Solutions | ESS3.C Human Impacts on Earth Systems | 2. Cause and Effect | Propose several different processes to monitor and/or minimize the impact of human activity on water supplies. |
| 27 | Two-point item:
Part A: Third and fifth options. (1 point)
Part B:
Row 1: Improves the rate of heating
Row 2: Reduces the rate of heating
Row 3: Improves the rate of heating
Row 4: Reduces the rate of heating (1 point) | MS-ETS1-1 | 1. Asking Questions and Defining Problems | ETS1.A Defining and Delimiting Engineering Problems | N/A | Identify how to address factors in designing a solar cooker that heats food faster than a conventional oven. |
<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>PE</th>
<th>SEP</th>
<th>DCI</th>
<th>CCC</th>
<th>ILCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>C</td>
<td>MS-ESS1-2</td>
<td>2. Developing and Using Models</td>
<td>ESS1.B Earth and the Solar System</td>
<td>4. Systems and System Models</td>
<td>Identify the locations of several celestial objects within the solar system, including the Earth, to complete the model.</td>
</tr>
</tbody>
</table>
| 29 | First drop-down menu: protein
| 30 | produces more (1 point) | MS-LS3-1 | 2. Developing and Using Models | LS3.A Inheritance of Traits | 6. Structure and Function | Complete an explanation on the effect a gene mutation has on the resulting protein and the trait of the organism. |
| 31 | D | MS-LS3-2 | 2. Developing and Using Models | LS3.A Inheritance of Traits | 2. Cause and Effect | Explain how the genetic differences could arise from the subset of alleles inherited. |
| 32 | First drop-down menu: most
Second drop-down menu: over 50% (1 point) | MS-LS4-4 | 6. Constructing Explanations and Designing Solutions | LS4.B Natural Selection | 2. Cause and Effect | Complete an explanation to describe why one variation of a trait is more advantageous in a given environment. |
Item metadata table continuation showing items 33–34

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>PE</th>
<th>SEP</th>
<th>DCI</th>
<th>CCC</th>
<th>ILCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Third and fourth options (1 point)</td>
<td>MS-LS4-4</td>
<td>6. Constructing Explanations and Designing Solutions</td>
<td>LS4.B Natural Selection</td>
<td>2. Cause and Effect</td>
<td>Select the additional data that would be most relevant to helping to interpret the graph.</td>
</tr>
<tr>
<td>34</td>
<td>Exemplars and rubric provided below.</td>
<td>MS-LS4-4</td>
<td>6. Constructing Explanations and Designing Solutions</td>
<td>LS4.B Natural Selection</td>
<td>2. Cause and Effect</td>
<td>Relate the patterns on the graph to the adaptive status of the black allele.</td>
</tr>
</tbody>
</table>
Exemplars and rubric for item 34:

2 point

Exemplar(s):

The black squirrel population goes up at the start, showing it’s helpful, but goes down at the end, showing it’s harmful.

OR

From 2010 to 2012, the increase in black squirrels show it was a helpful mutation. From 2013 to 2015, the decrease in black squirrels shows that it was a harmful mutation.

Rubric:

The response includes an explanation of how the mutation was helpful—that the percentage of the black squirrels increased from 2010 to 2012.

AND

The response includes an explanation of how the mutation was harmful—that the percentage of the black squirrels decreased from 2013 to 2015.

Rubric continues on the next page.
Rubric continues from previous page

1 point

Exemplar(s):

The number of black squirrels increased for part of the time and decreased for part of the time.

OR

We know being black was helpful at the beginning because there were more black ones in 2012 than in 2010.

OR

After 2013, the decrease in black squirrels showed that the mutation was harmful.

Rubric:

The response includes only one explanation for how the mutation was helpful or harmful.

OR

The response only describes a valid pattern but does not explicitly connect the data on the graph to the harm or benefit of the mutation.

NOTE: repeating the pattern from the prompt, that the genetic mutation was helpful and harmful is not sufficient.

Rubric continues on the next page.
Rubric continues from previous page

0 point

Exemplar(s):

It’s helpful because it helps them survive.
OR

It’s harmful because it means they will get more eaten.
OR

The numbers change when the mutation changes from helpful to harmful.
OR

The mutation is sometimes helpful and sometimes harmful because it depends on the color to help them survive.
OR

*YTT%$#$D
OR

I don’t know; I was never taught this.

Rubric continues on the next page.
Rubric continues from previous page.

Rubric:

0-point should be awarded if a student attempts to answer the prompt but the response is incorrect or too vague (insufficient information provided) to receive credit.

A score of 0 should also be given to responses that consist only of:

No relevant content provided

- no response is provided (e.g., blank)
- random keystrokes or nonsense verbiage
- punctuation mark(s) (e.g., “.”)

Student’s opinion of the test

Direct copy of the stimulus without any attempt to answer

Opinions or comments about random topics

I don’t know, IDK (without further elaboration)

Responses that go on to provide an answer to the prompt should be scored based on the relevant part of the response.
Item metadata table continuation showing items 35–36

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>PE</th>
<th>SEP</th>
<th>DCI</th>
<th>CCC</th>
<th>ILCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>First and second options (1 point)</td>
<td>MS-PS3-2</td>
<td>2. Developing and Using Models</td>
<td>PS3.A Definitions of Energy</td>
<td>4. Systems and System Models</td>
<td>Select components and describe relationships and behaviors between the components to explain potential energy based on data from a roller coaster model.</td>
</tr>
</tbody>
</table>
Item metadata table continuation showing items 37–39

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>PE</th>
<th>SEP</th>
<th>DCI</th>
<th>CCC</th>
<th>ILCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>C</td>
<td>MS-PS3-2</td>
<td>2. Developing and Using Models</td>
<td>PS3.A Definitions of Energy</td>
<td>4. Systems and System Models</td>
<td>Select components and describe relationships and behaviors between the components to explain potential energy based on data from a roller coaster model.</td>
</tr>
<tr>
<td></td>
<td>Row 2: Supports Claim 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Row 3: Supports Claim 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1 point)</td>
</tr>
<tr>
<td>39</td>
<td>First drop-down menu: increase</td>
<td>MS-PS3-1</td>
<td>4. Analyzing and Interpreting Data</td>
<td>PS3.A Definitions of Energy</td>
<td>3. Scale, Proportion, and Quantity</td>
<td>State that increasing the object’s mass results in a directly proportional increase of the object’s kinetic energy.</td>
</tr>
<tr>
<td></td>
<td>Second drop-down menu: remain the same</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1 point)</td>
</tr>
</tbody>
</table>
Exemplars and rubric for item 40:

2 point

Exemplar(s):

The new train has less kinetic energy because it has less mass when it’s empty.

OR

The original empty train has more KE than the new train because the original train is heavier than the new train.

Rubric:

The response includes a statement that the kinetic energy of the new train will be less than that of the original train.

Rubric continues on the next page.
The response includes a statement that the new train's mass is less than that of the original train.

1 point

Exemplar(s):

The original train has more KE than the new one.

OR

The new empty train has less mass.

OR

The current train has a mass of 3,300 kg and the new train has a mass of 1,650 kg, but both trains have the same velocity at the bottom of the first hill.

Rubric:

The response includes a statement that the kinetic energy of the new train will be less than that of the original train.

OR

The response includes a statement that the new train's mass is less than that of the original train.

0 point

Exemplar(s):

Rubric continues on the next page.
Rubric continues from previous page.

The old train has less KE than the new train.

OR

*YTT%$#$D

OR

I don’t know; I was never taught this.

Rubric:

0-point should be awarded if a student attempts to answer the prompt but the response is incorrect or too vague (insufficient information provided) to receive credit

A score of 0 should also be given to responses that consist only of:

No relevant content provided

- no response is provided (e.g., blank)
- random keystrokes or nonsense verbiage
- punctuation mark(s) (e.g., “.”)

Student’s opinion of the test

Direct copy of the stimulus without any attempt to answer

Opinions or comments about random topics

Rubric continues on the next page.
Rubric continues from previous page.

Direct copy of the stimulus without any attempt to answer

Opinions or comments about random topics

I don’t know, IDK (without further elaboration)

Responses that go on to provide an answer to the prompt should be scored based on the relevant part of the response.
<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>PE</th>
<th>SEP</th>
<th>DCI</th>
<th>CCC</th>
<th>ILCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>B</td>
<td>MS-ESS3-5</td>
<td>1. Asking Questions and Defining Problems</td>
<td>ESS3.D Global Climate Change</td>
<td>7. Stability and Change</td>
<td>Identify questions about patterns in data that connect natural processes and human activities to changes in global temperatures and carbon dioxide and other greenhouse gases over the past century.</td>
</tr>
<tr>
<td>42</td>
<td>First drop-down menu: model</td>
<td>MS-ESS3-4</td>
<td>7. Engaging in Argument from Evidence</td>
<td>ESS3.C Human Impacts on Earth Systems</td>
<td>2. Cause and Effect</td>
<td>Identify a potential source of evidence/data that could be used to support their claim about greenhouses.</td>
</tr>
<tr>
<td>43</td>
<td>Exemplars and rubric provided below.</td>
<td>MS-ESS3-4</td>
<td>7. Engaging in Argument from Evidence</td>
<td>ESS3.C Human Impacts on Earth Systems</td>
<td>2. Cause and Effect</td>
<td>Use graphical evidence to support a student claim about changes in CO$_2$ causing a concomitant change in temperature.</td>
</tr>
</tbody>
</table>
Exemplars and rubric for item 43:

2 point

Exemplar(s):

Student 2's claim is supported by the graph when you compare beakers 2 and 3.

OR

If you look at beakers 2 and 3 in the graph you see that they support student 2.

Rubric:

The response includes identifying that student claim 2 (or student 2 or claim 2) would be supported by the graph.

AND

The response includes identifying that beakers 2 and 3 should be compared to support the claim.

Rubric continues on the next page.
Rubric continues from previous page.

1 point

Exemplar(s):
The beakers in the graph support student 2 the best.

OR

Student 1 is supported when you look at beakers 2 and 3 in the graph.

OR

Beakers 2 and 3 provide the best data to support a claim.

Rubric:
The response includes identifying that student claim 2 (or student 2 or claim 2) would be supported by the graph.

OR

The response includes identifying that beakers 2 and 3 should be compared to support the claim.

0 point

Exemplar(s):
Student 1 has a claim supported when you look at beakers 1 and 3.

OR

Rubric continues on the next page.
Grade Eight Practice Test Items

Rubric continues from previous page.

Beaker data in the graph support a student claim.

OR

*YTT%$#$D

OR

I don’t know; I was never taught this.

Rubric:

0-point should be awarded if a student attempts to answer the prompt but the response is incorrect or too vague (insufficient information provided) to receive credit.

A score of 0 should also be given to responses that consist only of:

No relevant content provided

• no response is provided (e.g., blank)
• random keystrokes or nonsense verbiage
• punctuation mark(s) (e.g., “.”)

Student’s opinion of the test

Direct copy of the stimulus without any attempt to answer

Opinions or comments about random topics

Rubric continues on the next page.
Rubric continues from previous page.

I don’t know, IDK (without further elaboration)

Responses that go on to provide an answer to the prompt should be scored based on the relevant part of the response.

Item metadata table continuation showing items 44–45

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>PE</th>
<th>SEP</th>
<th>DCI</th>
<th>CCC</th>
<th>ILCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>First and third options (1 point)</td>
<td>MS-ESS3-4</td>
<td>7. Engaging in Argument from Evidence</td>
<td>ESS3.C Human Impacts on Earth Systems</td>
<td>2. Cause and Effect</td>
<td>Evaluate (with reasoning) whether the provided evidence/data is sufficient to defend the claim for Prediction 2.</td>
</tr>
<tr>
<td>45</td>
<td>First drop-down menu: graph Second drop-down menu: town’s (1 point)</td>
<td>MS-ESS3-4</td>
<td>7. Engaging in Argument from Evidence</td>
<td>ESS3.C Human Impacts on Earth Systems</td>
<td>2. Cause and Effect</td>
<td>Identify a potential source of evidence/data that could be used to support the claim for the increased use of fossil fuels.</td>
</tr>
</tbody>
</table>